If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y+16=3y^2
We move all terms to the left:
10y+16-(3y^2)=0
determiningTheFunctionDomain -3y^2+10y+16=0
a = -3; b = 10; c = +16;
Δ = b2-4ac
Δ = 102-4·(-3)·16
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{73}}{2*-3}=\frac{-10-2\sqrt{73}}{-6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{73}}{2*-3}=\frac{-10+2\sqrt{73}}{-6} $
| 8-(x+1)=5 | | |4w+8|=4 | | 10y+16=9y^2 | | 40/60=30/x | | (-11)n=121 | | 3x+3(5x+3)=74 | | 3x-6=2(3-x) | | 9m-19=3m+1m=5/3 | | 0=−16t^2+8t+80 | | -2/3x+(10)=14 | | 0=−16t2+8t+80 | | 2.676=9.9−z·2.8 | | -2/3x+10)=14 | | 36.5=66.1−2s | | 7x-4=3(x+12) | | 7x(x)=250 | | 2(u-8)-5=-3(-5u+3)-3u | | -6(3w-1)+7w=3(w+4) | | -4x+29=-5x+9 | | -4x+29=5x-9 | | 9(w-4)=5w+4 | | 2/3x+7/3x=3/x | | 2/3x+7/3x=1/3x | | 2/3x+7/3x=3x | | x^2=321 | | x²=321 | | 2/3x+7/3x=14/3x | | 4v-8=6(v-1) | | 4(v-8)=-3v-18 | | 4/7x+8=27 | | 9=-5v+2(v+3) | | 6x+18-7=6x+3+x |